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Abstract: For manufacturers as well as consumers, a 

product with a defective bottle or the existence of foreign 

objects is unacceptable. This article refers to the application 

of computer vision as a field of artificial intelligence to the 

automatic of foreign object detection and the quality of 

bottle. The inspection is carried out at all areas including 

body, mouth and bottom of the bottle. For experiment of 

this research, the python programming language is 

incorporated with an open source library (OpenCV). The 

training of system must be ensured that computer vision 

works so that it is closest to human vision which means 

building on simulating how the human brain works, known 

as neural network. Input data after going through the 

preprocessing process will be measured and diagnosed by 

the computer based on the trained knowledge, thereby 

determining the quality of the current product. The results 

obtained will be shown on a Graphical User Interface to 

facilitate the extraction and operation. 

Keywords: Computer vision, OpenCV, Bottle inspection, 

Foreign object detection, Neural network. 

I. INTRODUCTION  

The influence of foreign bodies in products can be 
very large and very negative, which is why 
manufacturers require strict inspections to promptly 
detect foreign objects and defects of the product. 
However, it is difficult to guarantee the reliability and 
adapt to the requirements of modern production lines 
using the traditional way of manual detection [1]. In 
addition, manual inspection by humans is increasingly 
revealing many disadvantages such as low stability 
depending on their health and psychophysiological 
factors, low performance, increased operating costs. 
Therefore, applying an automated inspection system 
will help solve these problems. 

There are many technological solutions applied in 
the process of checking bottles today. If only to detect 
metal foreign bodies, one can use metal probes. If it is 
necessary to check for defects in body shape, cracks, 
defects, digital cameras are used at the locations to be 
checked,... each of those technology solutions usually 
only addresses a certain requirement [2,3]. There are 

several surface defect detection algorithms such as: 
bottle mouth inspection based on the recommended 
ELM (Extreme Learning Machine) algorithm  [4] and 
the detection rate can reach 99. 41%; the classification 
of bottle defects and the recognition of bottle mouth 
defects by SVM (Support Vector Machine) [5] has a 
detection rate of  91.6%. In addition, there are many 
other techniques used  such as the detection of bottle 
wall defects based on the Fuzzy C Means Clustering 
algorithm; detection of bottle bottom defects based on 
Wavelet transform; surface defect detection based on 
Blod analysis [6,7],... However, the use of these 
algorithms to check bottles is still difficult and 
difficult to apply directly in practice, especially for 
bottles with  non-slip ribs at the bottom of the bottle. 
Therefore, in the defect recognition of bottle bottom, 
because the antiskid veins of bottle bottom influence 
the detection accuracy [1]. At the same time, if you 
want to process multiple requests at the same time, the 
greater the number of objects collecting input data,  
plus the processing of the algorithm becomes more 
complex. This makes the automated inspection system 
cumbersome, slow processing speed at high cost. 

At present, some big companies such as Heuft, 
Krones, Miho in Germany and Filtec in America, have 
made empty bottle inspection systems applicable to 
beverage and beer production lines [8]. The study of 
empty bottle inspection systems mainly focuses on 
how to improve the accuracy, speed and reliability of 
detection. However,  these systems are only applicable 
to certain standards in the US and EU beer and 
beverage industries [8].  Such systems are difficult to 
apply in the beverage industry in Vietnam if it is not 
improved in algorithms and configurations. 

To solve the  problems as mentioned  above, 
computer vision is a new field and has the ability to 
apply effectively in many different fields, especially 
the beverage industry. The application of computer 
vision and artificial intelligence integrated into the 
control system allows the creation of an intelligent 
control system. This system can receive images 
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obtained with multidimensional data sets for analysis 
and processing according to the intention set by 
humans.  Work is started from the image 
preprocessing process; the results obtained will be 
measured and diagnosed by the computer by 
comparing with the "knowledge" that has been 
"trained", thereby identifying the object to be 
monitored. When "training" the system, it must ensure 
that computer vision works in a way that most closely 
resembles human vision.  called Neural Networks. 
Convolutional Neural Networks (CNNs) are one of the 
most efficient models available today  [11,13]. 

  This paper focuses on the research and 
application of computer vision, artificial intelligence 
and integration into control systems to detect and 
remove glass bottles on the bottling line with defects 
(incompleteness on the body of the bottle, mouth and 
bottom of the bottle) and foreign objects that exist 
inside the bottle (e.g. pieces of metal, glass, mineral 
stone, wood, bone, hard plastic, rubber,...). The rest of 
the article is sorted as follows. Part II presents the 
application of computer vision to check the quality of 
bottles and detect foreign bodies in the body of bottles. 
Experimental model and experimental results of 
automated systems that automatically identify and 
remove defective glass bottles are presented in Part III. 
Part IV is the conclusion. 

II. THE PROPOSED METHOD 

CNNs are one of the most common deep Neural 
Networks [14]. The name derives from the fact that 
CNNs have the application of linear operations 
between matrices called convolutions. CNNs has 
multiple layers; including convolutional layer, non-
linear layer, pooled layer, and fully connected layer 
[14]. In this study, CNNs were used to "train" the 
system to recognize the objects to be detected. 

There are mainly two types of object detection 
methods that are based on CNNs: two-stage schemes 
(also named R-CNN series object detection) and one-
stage schemes, where the two-stage schemes combine 
region proposals with the CNN network to detect 
objects. In the one-stage schemes, the object detection 
is transformed into a regression problem to perform 
end-to-end detection [9]. Although two-stage method 
has higher accuracy than one-stage method, the one-
stage method has faster detection speed than two-stage 
method [10]. Many CNNs-based model architectures 
have been built, of which YOLOv5 is one of the new 
architectures, a new approach to object discovery [11]. 
The block diagram of the YOLOv5 architecture is 
presented in Fig. 1. This architecture has fast 
processing speed with high accuracy, suitable for 
object detection tasks in practice. 

YOLOv5 has multiple versions, in this study 
selected the version with an inference rate per image 

of 8.2 ms and the mean average precision value of 
45.2 mAP. The system is planned to be built with two 
checking chambers, the first has 3 cameras to check 
for cracks on the bottle; the checking chamber 2 
includes a camera to check for bottle bottom faults, 
bottle mouth faults and foreign objects. The actuators 
are connected to the microcontroller circuit linked to 
the computer to control the entire operation of the 
system. Fig. 2 shows the overall connection diagram 
of the system, and Fig. 3 shows the design diagram of 
the experimental model. 

 

Fig. 1. The network architecture of Yolov5.  It consists 
of three parts: (1) Backbone: CSPDarknet, (2) Neck: 
PANet, and (3) Head: Yolo Layer. The data are first 

input to CSPDarknet for feature extraction, and then fed 
to PANet for feature fusion. Finally, Yolo Layer outputs 

detection results (class, score, location, size) [12] 

 

Fig. 2. Connection diagram of the system 

 

Fig. 3. Design diagram of the empirical model 
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Fig. 4. Stages of implementation of the study 

 To train the system, we must first prepare an input 
data source consisting of 2500 images of bottles to be 
tested, the size of each image is 640 x 480 pixels, 
divided into two datasets for two checking chambers. 
This is an extremely important step and has a great 
impact on the accuracy of the system. The more 
different images of the subject are used for training, 
the more "intelligent" the system after training will be, 
from which it is easier to "see" the object during 
operation.  An overview of the stages of the study is 
shown in Fig. 4. The images data will be labeled 
before being included in training for the model. The 
experimental model has two checking chambers. 
Checking chambers 1 has two layers of labels built, 
including: "chai" and "nut_vo"; checking chamber 2 
has three layers of labels: "mieng_chai", "di_vat" and 
"bien_dang". Labeling is required to ensure that the 
bounding box covers just enough around the object to 
be detected, helping to increase the accuracy of the 
object detection process. After being labeled, the 
dataset is fed into training the model. The 
experimental process shows that the more repetitions 
of training, the higher the ability to accurately identify 
the object, and with the number of repetitions of 300 
times or more, the ability to accurately identify the 
object does not change too much. Fig. 5 shows the 
model's training. 

 

Fig. 5. Model training process 

 

Fig. 6. Codes in microcontroller circuitry 

 

Fig. 7. System’s operation progress 

 

Fig. 8. Flowchart algorithm of the system 

 The results obtained from the training are used as a 
data source for the inspection of the bottle. The system 
is controlled through programming programmed in the 
microcontroller circuit and on a computer. Fig. 6 
shows a program segment programmed in a 
microcontroller circuit. The programming language 
used to build computerized control programs  is 
Python, which uses computer vision command 
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libraries to build a flexible, fast, and accurate control 
algorithm. An overview diagram of the system's 
operational progress is shown in Fig. 7, and the 
proposed algorithmic diagram to perform this work is 
shown in Fig. 8. 

One of the most used libraries in the control 
program is the open source OpenCV-Python library, 
abbreviated under the name "cv2", commands that 
manipulate images applied from this library.  Fig. 9 
and Fig. 10 show the commands used in Python. 

In our study, the images collected from the 
cameras are RGB color images, converted to grayscale 
image format during image preprocessing, to help 
clarify object contours and features to be extracted , 
thereby overcoming the problem of missing small 
objects. To accurately detect errors, it is recommended 
that the diagnostic process be repeated twice for one 
bottle. The detected object will be marked with 
bounding boxes and the class name of the 
corresponding error. After the bottle is diagnosed, the 
obtained result contains many parameters, the program 
will extract the error code characteristic parameter to 
determine the fault nature of the bottle. If the bottle is 
defective, the bottle identifier will be updated to a 
vector of dimensions (1 x N), where N is the number 
of detected defective bottles, to serve the process of 
classifying the bottles after inspection. . 

The bottle sorting stage after being diagnosed is a 
combination of a computer and a microcontroller 
circuit. Both of these components are set at a data rate 
of 9600 bps, communicating through the serial 
communication port. Corresponding to each task is a 
separate code used for communication, accompanied 
by a "key code" to determine the correct time of data 
transmission, avoiding the case of transmission at the 
wrong time or uncontrollable batch transmission. 

Because the system has a combination of multiple 
cameras, the data processing process on the computer 
needs to apply threading techniques to be able to 
collect data simultaneously.  Fig. 11 shows the 
application of threading techniques in this study. 

The results of the inspection are presented on the 
graphical user interface as shown in Fig. 12 to make it 
more convenient for the operation process. To perform 
this step, the image frame coordinates parameter is 
extracted as a "Records", and the collected image must 
be converted to the Python Imaging Library (PIL) 
domain before being displayed to the GUI for the 
reason that GUI design support commands are only 
compatible with PIL images. 

 

Fig. 9. Declare some libraries that use python 
programming language 

 

Fig. 10. Application library "cv2" 

 

Fig. 11. Apply threading techniques 

 

Fig. 12. Create the Graphical user interface 

III. EXPERIMENTS 

After the experimental implementation process, we 
have successfully built a model, meeting the 
requirements of the study. The operation of the system 
achieves positive results with high accuracy, the 
ability to detect objects accurately. The training was 
repeated 300 times, with 290 layers of the YOLOv5 
model, each time 16 data images were included in the 
training simultaneously, resulting in batches of post-
training data stored for the operation of the system.  
Fig. 13 shows batches of data obtained after training.  
Fig. 14 and Fig. 15 represent the experimental model 
we designed. Fig. 16 shows the results shown on the 
graphical user interface, and Fig. 17 is a composite of 
the labels assigned to the object. 
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Fig. 13. Illustration of trained data batch 

 

Fig. 14. Checking chamber 1 

 

Fig. 15. Checking chamber 2 

 

Fig. 16. Results displayed on GUI 

Note that previous algorithms mainly only detected 
errors on the surface of the bottle, but in this study, 
with the transparent bottle object, the system was able 
to detect errors not only on the surface but also inside 
the material that makes up the bottle, with test speed 
for a fast object, can achieve up to 18ms. At the same 
time, this is a non-destructive inspection process, 
which will ensure the safety of the inspected object, 
suitable for all professions, especially in the 
production of food and beverages. 
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Fig. 17. The labels of the training process 

   

 

Fig. 18. F1_curve 

  

Fig. 19. PR_curve 

According to the F1_curve graph in Fig. 18 as can 
be seen, for the test training in checking chamber 1, in 
the confidence interval from 0.05 to 0.85, the value of 
F1 is maintained at a high level above 0.8 (for all 
classes), and reaches a maximum value of 0.90; for the 
test training stage in checking chamber 2, in the 
confidence interval from 0.0 to 0.95, the value of F1 is 
maintained at a high level above 0.8 (for all classes), 
and reaches a maximum value of 0.93, proving that the 
efficiency of the achieved model is high and is 
maintained in a large confidence interval. 

On the other hand, on the graph PR_curve in Fig. 
19 showing a correlation between precision and recall 
shows that precision remains high as recall increases 
despite changes in confidence thresholds over a wide 
range. The mean average precision value (mAP) at the 
Intersection Over Union (IoU) threshold of 0.5 was 
achieved at 0.884 for identification in checking 
chamber 1 and 0.937 for identification in checking 
chamber 2, respectively, which is a high result 
demonstrating the high accuracy of the entire system. 

IV. CONCLUSION 

Inspecting the quality of bottle and foreign object 
in bottle is one of the important stages in modern 
production lines, it has a direct impact on the speed, 
accuracy and productivity of the whole factory. This 
report studies the application of computer vision to the 
inspection process, so that it is possible to 
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comprehensively inspect the areas of the bottle in the 
same stage, helping to shorten working time as well as 
minimize the layout of space in the actual factory.  

To do this, it is important first that the data source 
used for the "training" process be carefully selected so 
that it contains all the situations in which the object 

occurs. After the model is trained, it is necessary to 
extract the appropriate characteristic parameters for 
each task. The experimental results show that the 
algorithm proposed in this paper can improve the 
efficiency and accuracy of detecting defects and 
foreign bodies in bottles and can be applied in 
practice. 

REFERENCES 

[1] Bin Huang, Sile Ma, Yufeng Lv, Hualong Zhang, 
Chunming Liu and Huajie Wang, School of 
control science and engineering, Shandong 
University 17923, Jingshi Road, Ji'nan, China, 
Research on Bottom Detection in Intelligent 
Empty Bottle Inspection System, 2013. 

[2] Jianxin YIN, Hengnian QI, Hailin FENG, et al. A 
method for wood surface defect detection based 
on mixed texture features. Journal of Zhejiang A 
& F University. 2011; 28(6): 937-942. 

[3] Chao Gao, Xinke Li, Yongcai Guo, et al. Machine 
vision detecting system for bridge cable defect. 
Sciencepaper Online. 2011; 6(10): 775-780. 

[4] Muxing Li, Zhihong Huang, Research on beer 
bottle defect detection method based on extreme 
learning machine, Comput. Technol. Automat 
35(4)(2016) 117–120. 

[5] Zhihong Huang, Jianxu Mao, Yaonan Wang, et 
al., Research on beer bottle defect classification 
detection method based on machine vision, J. 
Electr. Meas. Instrum. 30 (6) (2016) 873–879. 

[6] Meihong SHI, Wenguang WANG. Fabric Defect 
Detection Algorithm Based on Blob Algorithm. 
Modern Electronics Technique. 2010; 24: 29-32. 

[7] Min XU, Wanyou TANG, Qianli MA, et al. 
Research of Printing Defect On-line Detection 
Based on Blob Algorithm. Packaging Engineering. 
2011; 32(9): 20-23. 

[8] Bin Huang, Sile Ma , Ping Wang, Huajie Wang, 
Jinfeng Yang, Xinyi Guo, Weidong Zhang, 
Huiquan Wang, School of Control Science and 

Engineering, Shandong University, Ji'nan, China, 
Research and implementation of machine vision 
technologies for empty bottle inspection systems, 
2018. 

[9] Zhang H, Qin L, Li J, et al. Real-Time Detection 
Method for Small Traffic Signs Based on Yolov3. 
IEEE Access, 2020, 8: 64145 – 64156 

[10] Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-
time object detection method for embedded 
devices. 

[11] Redmon, Joseph, et al. "You only look once: 
Unified, real-time object detection." Proceedings 
of the IEEE conference on computer vision and 
pattern recognition. 2016. 

[12] Xu, R.; Lin, H.; Lu, K.; High, L.; Liu, Y. A Forest 
Fire Detection System Based on Ensemble 
Learning. 2021, 12, 217. 

[13] Teja Kattenborn, Jens Leitloff, Felix Schiefer, 
Stefan Hinz, Review on Convolutional Neural 
Networks (CNN) in vegetation remote sensing, 
ISPRS Journal of Photogrammetry and Remote 
Sensing, Volume 173, March 2021, Pages 24-49 

[14] S. Albawi, T. A. Mohammed and S. Al-Zawi, 
"Understanding of a convolutional neural 
network," 2017 International Conference on 
Engineering and Technology (ICET), 2017, pp. 1-
6, doi:10.1109/ICEngTechnol.2017.8308186. 

[15] Huynh Nil Giang, Nguyen Kim Anh, Nguyen 
Khanh Quang, Linh Nguyen. "An Inspection 
Robot for Detecting and Tracking Welding Seam". 
978-1-6654-3405-8/21/$31.00 © 2021 IEEE,  
in press. 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0924271620303488#!
https://www.sciencedirect.com/journal/isprs-journal-of-photogrammetry-and-remote-sensing
https://www.sciencedirect.com/journal/isprs-journal-of-photogrammetry-and-remote-sensing
https://www.sciencedirect.com/journal/isprs-journal-of-photogrammetry-and-remote-sensing/vol/173/suppl/C

